If it's not what You are looking for type in the equation solver your own equation and let us solve it.
n^2+12n-19=0
a = 1; b = 12; c = -19;
Δ = b2-4ac
Δ = 122-4·1·(-19)
Δ = 220
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{220}=\sqrt{4*55}=\sqrt{4}*\sqrt{55}=2\sqrt{55}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-2\sqrt{55}}{2*1}=\frac{-12-2\sqrt{55}}{2} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+2\sqrt{55}}{2*1}=\frac{-12+2\sqrt{55}}{2} $
| 8x+1-3x=2x-2 | | -4g-5=-5+6 | | 5x+20=10x+-80 | | F(-4)=3x2-2x | | 4)x/8-2)=1/4(2x-5) | | 7x-3+3x=7 | | 2(10+x)=6 | | 11a-9a=2 | | 4)x/8-2)=1/4(2x-2) | | 6(3x-7=-42 | | -4(2x-9)+6(-x+1)=-8x-5(3x-3) | | 4)x/8-2)=1/4(2x-6) | | -4(7x+11)=-2(14x=22) | | 7(-1+5x)=-252 | | 5x-23=62 | | (4x-3)+(3x+5)=7x+2 | | -12(x-2)+3x=1/2(x+6)+2 | | -6(4+3x)=-42 | | 8x-1=153 | | 36=3x+2(x+4) | | 3=3p•1/3 | | 4)x/8-2)=1/4(2x-4) | | 2(x+3-7+5x=5 | | -x/7=39 | | 16-(-3n)=70 | | Q=3p•1/3 | | 2(x-1)+6x=4-1+2 | | .5(8x+26)=12+4x | | 4x=9=19 | | 8v-(-2)=66 | | -59=v/7 | | 11x-8=278 |